
SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely
voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

TO PLACE A DOCUMENT ORDER: +1 (724) 776-4970 FAX: +1 (724) 776-0790
SAE WEB ADDRESS http://www.sae.org

Copyright 2002 Society of Automotive Engineers, Inc.
All rights reserved. Printed in U.S.A.

SURFACE
VEHICLE

400 Commonwealth Drive, Warrendale, PA 15096-0001
RECOMMENDED
PRACTICE

J2534
ISSUED
FEB2002

Issued 2002-02

Recommended Practice for Pass-Thru Vehicle Programming

Foreword—The use of reprogrammable memory technology in vehicle electronic control units (ECU’s) has
increased in recent years, and is expected to continue in the future. Use of this technology has increased the
flexibility of being able to use a single ECU hardware part to be used in many different vehicle configurations, with
the only difference being the software and calibrations programmed into the unit. Reprogramming of those ECU’s
in the service environment also allows for ease of field modification of system operation and calibrations.
Variations in reprogramming capability and the multiple tools necessary to reprogram vehicles are a burden on
aftermarket repair facilities that service different makes of vehicles.

This document describes a standardized system for programming that includes a standard personal computer
(PC), standard interface to a software device driver, and an interface that connects between the PC and a
programmable ECU in a vehicle. The purpose of this system is to facilitate programming of ECU’s for all vehicle
manufacturers using a single set of programming hardware. Programming software from multiple vehicle
manufacturers will be able to execute on this set of hardware to program their unique ECU’s.

The U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (ARB) have been
working with vehicle manufacturers to provide the aftermarket with increased capability to service emission-related
ECU’s for all vehicles with a minimal investment in hardware needed to communicate with the vehicles. Both
agencies have proposed regulations that will require standardized programming tools to be used for all vehicle
manufacturers. The Society of Automotive Engineers (SAE) developed this recommended practice to satisfy the
intent of the U.S. EPA and the California ARB.

SAE J2534 Issued FEB2002

-2-

TABLE OF CONTENTS

1. Scope..4

2. References ...4
2.1 Applicable Publications ...4
2.1.1 SAE Publications ..4
2.1.2 ISO Documents ..4

3. Definitions ...4

4. Acronyms ..5

5. Pass-Thru Concept...5

6. Pass-Thru System requirements ..6
6.1 PC requirements...6
6.2 Software Requirements and Assumptions ..6
6.3 Connection to PC..6
6.4 Connection to Vehicle ...6
6.5 Communication Protocols...6
6.5.1 ISO 9141...7
6.5.2 ISO 14230-4 (KWP2000) ..7
6.5.3 SAE J1850 41.6 kbps PWM (pulse width modulation)..7
6.5.4 SAE J1850 10.4 kbps VPW (variable pulse width) ...7
6.5.5 CAN ..7
6.5.6 ISO 15765-4 (CAN) ..7
6.5.7 SAE J2610 DaimlerChrysler SCI ..7
6.6 Programmable power supply ..8
6.7 Data Buffering...8

7. Win32 Application Programming Interface ...8
7.1 API Functions – Overview ..8
7.2 API Functions - Detailed Information ..8
7.2.1 PassThruConnect ...8
7.2.2 PassThruDisconnect...10
7.2.3 PassThruReadMsgs ...11
7.2.4 PassThruWriteMsgs ...12
7.2.5 PassThruStartPeriodicMsg ...13
7.2.6 PassThruStopPeriodicMsg ...14
7.2.7 PassThruStartMsgFilter .. 14
7.2.8 PassThruStopMsgFIlter .. 16
7.2.9 PassThruSetProgrammingVoltage ... 17
7.2.10 PassThruReadVersion ..18
7.2.11 PassThruGetLastError..19
7.2.12 PassThruIoctl .. 19
7.3 IOCTL Section .. 21
7.3.1 GET_CONFIG .. 21
7.3.2 SET_CONFIG... 22
7.3.3 READ_VBATT .. 25
7.3.4 READ_PROG_VOLTAGE .. 26
7.3.5 FIVE_BAUD_INIT ... 26
7.3.6 FAST_INIT .. 26
7.3.7 CLEAR_TX_BUFFER... 27

SAE J2534 Issued FEB2002

-3-

7.3.8 CLEAR_RX_BUFFER ..27
7.3.9 CLEAR_PERIODIC_MSGS.. 27
7.3.10 CLEAR_MSG_FILTERS ... 27
7.3.11 CLEAR_FUNCT_MSG_LOOKUP_TABLE ...28
7.3.12 ADD_TO_FUNCT_MSG_LOOKUP_TABLE... 28
7.3.13 DELETE_FROM_FUNCT_MSG_LOOKUP_TABLE... 29

8. Message Structure ..29
8.1 C / C++ Definition ... 29
8.2 Elements... 29
8.3 Message Data Formats .. 30
8.3.1 CAN Data Format ... 30
8.3.2 ISO 15765-4 Data Format .. 30
8.3.3 SAE J1850PWM Data Format .. 31
8.3.4 SAE J1850VPW Data Format... 31
8.3.5 ISO 9141 Data Format ..32
8.3.6 ISO 14230-4 Data Format .. 32
8.3.7 SCI Data Format ...32
8.4 Message Flag and Status Definitions ... 33
8.4.1 RxStatus ... 33
8.4.2 TxFlags ...33

9. DLL Installation and Registration .. 34
9.1 Naming of Files... 34
9.2 Win32 Registration ... 34
9.2.1 User Application Interaction with the Registry .. 36
9.2.2 Attaching to the DLL from an application .. 37

10. Return Value Error Codes .. 37

Appendix A General ISO 15765-2 Flow Control Example ... 39
A.1 Normal Addressing Used ..39
A.2 General Request Message Flow Example ...39
A.3 General Response Message Flow Example... 40

Appendix B Message Filter Usage Example ..42
B.1 Filter Usage ..42
B.2 Transmission of a Multi-Frame Request Message ... 42
B.3 Reception of a Multi-Frame Response Message.. 42
B.4 Filter Configuration ... 42
B.4.1 Request Message Transmission .. 44
B.4.2 Response Message Reception... 45
B.5 ISO 15765-2 Extended Addressing Notes.. 46

SAE J2534 Issued FEB2002

-4-

1. Scope—This SAE Recommended Practice provides the framework to allow reprogramming software
applications from all vehicle manufacturers the flexibility to work with multiple vehicle data link interface tools
from multiple tool suppliers. This system enables each vehicle manufacturer to control the programming
sequence for electronic control units (ECU’s) in their vehicles, but allows a single set of programming hardware
and vehicle interface to be used to program modules for all vehicle manufacturers.

This document does not limit the hardware possibilities for the connection between the PC used for the
software application and the tool (e.g., RS-232, RS-485, USB, Ethernet…). Tool suppliers are free to choose
the hardware interface appropriate for their tool. The goal of this document is to ensure that reprogramming
software from any vehicle manufacturer is compatible with hardware supplied by any tool manufacturer.

The U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (ARB) have
proposed requirements for reprogramming vehicles for all manufacturers by the aftermarket repair industry.
This document is intended to meet those proposed requirements for 2004 model year vehicles. Additional
requirements for the 2005 model year may require revision of this document, most notably the inclusion of SAE
J1939 for some heavy-duty vehicles. This document will be reviewed for possible revision after those
regulations are finalized and requirements are better understood. Possible revisions include SAE J1939
specific software and an alternate vehicle connector, but the basic hardware of an SAE J2534 interface device
is expected to remain unchanged.

2. References

2.1 Applicable Publications—The following publications form a part of this specification to the extent specified
herein. Unless otherwise indicated, the latest version of SAE publications shall apply.

2.1.1 SAE PUBLICATIONS—Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.

SAE J1850—Class B Data Communications Network Interface
SAE J1939—Truck and Bus Control and Communications Network (multiple parts apply)
SAE J1962—Diagnostic Connector
SAE J2610—DaimlerChrysler Information Report for Serial Data Communication Interface (SCI)

2.1.2 ISO DOCUMENTS—Available from ANSI, 25 west 43rd Street, New York, NY 10036-8002.

ISO 7637-1:1990—Road vehicles—Electrical disturbance by conduction and coupling—Part 1: Passenger
cars and light commercial vehicles with nominal 12 V supply voltage

ISO 9141:1989—Road vehicles—Diagnostic systems—Requirements for interchange of digital information
ISO 9141-2:1994—Road vehicles—Diagnostic systems—CARB requirements for interchange of digital

information
ISO 11898:1993—Road vehicles—Interchange of digital information—Controller area network (CAN) for

high speed communication
ISO 14230-4:2000—Road vehicles—Diagnostic systems—Keyword protocol 2000—Part 4: Requirements

for emission-related systems
ISO/DIS 15765-2—Road vehicles—Diagnostics on controller area networks (CAN)—Network layer

services
ISO/DIS 15765-4—Road vehicles—Diagnostics on controller area networks (CAN)—Requirements for

emission-related systems

3. Definitions

3.1 Registry—A mechanism within Win32 operating systems to handle hardware and software configuration
information.

SAE J2534 Issued FEB2002

-5-

4. Acronyms

API Application Programming Interface
ASCII American Standard for Character Information Interchange
CAN Controller Area Network
CRC Cyclic Redundancy Check
DLL Dynamic Link Library
ECU Electronic Control Unit
IFR In-Frame Response
IOCTL Input / Output Control
KWP Keyword Protocol
OEM Original Equipment Manufacturer
PC Personal Computer
PWM Pulse Width Modulation
SCI Serial Communications Interface
SCP Standard Corporate Protocol
USB Universal Serial Bus
VPW Variable Pulse Width

5. Pass-Thru Concept—Programming application software supplied by the vehicle manufacturer will run on a
commonly available generic PC. This application must have complete knowledge of the programming
requirements for the control module to be programmed and will control the programming event. This includes
the user interface, selection criteria for downloadable software and calibration files, the actual software and
calibration data to be downloaded, the security mechanism to control access to the programming capability,
and the actual programming steps and sequence required to program each individual control module in the
vehicle.

This document defines the following two interfaces for the SAE J2534 pass-thru device:

a. Application program interface (API) between the programming application running on a PC and a
software device driver for the pass-thru device

b. Hardware interface between the pass-thru device and the vehicle

All programming applications shall utilize the common SAE J2534 API as the interface to the pass-thru device
driver. The API contains a set of routines that may be used by the programming application to control the
pass-thru device, and to control the communications between the pass-thru device and the vehicle. The pass-
thru device will not interpret the message content, allowing any message strategy and message structure to be
used that is understood by both the programming application and the ECU being programmed. Also, because
the message will not be interpreted, the contents of the message cannot be used to control the operation of the
interface. For example, if a message is sent to the ECU to go to high speed, a specific instruction must also be
sent to the interface to go to high speed.

The manufacturer of an SAE J2534 pass-thru device must supply both the device driver software and the
pass-thru device hardware that communicates directly with the vehicle. The interface between the PC and the
pass-thru device can be any technology chosen by the tool manufacturer, including RS-232, RS-485, USB,
Ethernet, or any other current or future technology, including wireless technologies.

The OEM programming application does not need to know the hardware connected to the PC, which gives the
tool manufacturers the flexibility to use any commonly available interface to the PC. The pass-thru device
does not need any knowledge of the vehicle or control module being programmed. This will allow all
programming applications to work with all pass-thru devices to enable programming of all control modules for
all vehicle manufacturers.

SAE J2534 Issued FEB2002

-6-

Figure 1 shows the relationship between the various components required for pass-thru programming and
responsibilities for each component:

FIGURE 1—SAE J2534 OVERVIEW

6. Pass-Thru System Requirements

6.1 PC Requirements—Generic PC running a Win32 Operating System (e.g., Windows 95/Windows 98/Windows
NT/Windows Millennium Edition, Windows 2000, Windows XP, …). The PC should be capable of connection
to the Internet.

6.2 Software Requirements and Assumptions—Reprogramming applications can assume that the PC will be
connected to the Internet, although not all applications will require this. The OEM application is limited to a
single thread for communication with the tool manufacturer DLL/API. Multiple protocols may be connected and
communicated on sequentially (serialized) from the single application thread. This will prevent the
unnecessary complexity of determining what message responses belong to which application thread.

6.3 Connection to PC—The interface between the PC and the pass-thru device shall be determined by the
manufacturer of the pass-thru device. This can be RS-232, USB, Ethernet, IEEE1394, Bluetooth or any other
connection that allows the pass-thru device to meet all other requirements of this document, including timing
requirements. The tool manufacturer is also required to include the device driver that supports this connection
so that the actual interface used is transparent to both the PC programming application and the vehicle.

6.4 Connection to Vehicle—The interface between the pass-thru device and the vehicle shall be an SAE J1962
connector for serial data communications. The maximum cable length between the pass-thru device and the
vehicle is five (5) meters. Vehicle manufacturers will need to supply information about necessary connections
to any connector other than the SAE J1962 connector.

6.5 Communication Protocols—A fully compliant pass-thru interface shall support all communication protocols
as specified in this section. Additionally, the pass-thru device must support simultaneous communication of an
ISO 9141 OR ISO 14230-4 protocol AND an SAE J1850 protocol AND a CAN or SCI based protocol during a
single programming event. Note that only one type of SAE J1850 is required per programming event, as the
two types of SAE J1850 are mutually exclusive on any given vehicle. As well, CAN and SCI are mutually
exclusive on some vehicles as the same pins are used.

SAE J2534 Issued FEB2002

-7-

The following communication protocols shall be supported:

6.5.1 ISO 9141—The following specifications clarify and, if in conflict with ISO 9141, override any related
specifications in ISO 9141:

a. The maximum sink current to be supported by the interface is 100 mA.
b. The range for all tests performed relative to ISO 7637-1 is –1.0 to +40.0 V.
c. The minimum bus idle period before the interface shall transmit an address, shall be 300 ms.
d. Support following baud rate with ±0.5% tolerance: 10400.
e. Support following baud rates with ±2% tolerance: 9600, 9615, 10000, 10870, 11905, 12500, 13158,

13889, 14706, and 15625.
f. Support odd and even parity in addition to the default of no parity, with seven or eight data bits.

Always one start bit and one stop bit.

6.5.2 ISO 14230-4 (KWP2000)—The ISO 14230-4 protocol is the same as the ISO 9141 protocol with the
following additions:

a. The interface will handle the tester present message and 0x78 response code automatically (i.e.,
without intervention from the PC).

6.5.3 SAE J1850 41.6 KBPS PWM (PULSE WIDTH MODULATION)—The following additional features of SAE J1850
must be supported by the pass-thru device for 41.6 kbps PWM:

a. Capable of high speed mode of 83.3 kbps.
b. Recommend Ford approved SAE J1850PWM(SCP) physical layer

6.5.4 SAE J1850 10.4 KBPS VPW (VARIABLE PULSE WIDTH)—The following additional features of SAE J1850 must
be supported by the pass-thru device for 10.4 kbps VPW:

a. High speed mode of 41.6 kbps
b. 4K block transfer

6.5.5 CAN—The following features of ISO 11898 must be supported by the pass-thru device:

a. 250 and 500 kbps
b. 11 and 29 bit identifiers
c. Support for 80% ± 2% and 68.5% ± 2% bit sample point
d. Pass-thru message interface (i.e., raw CAN frames with no flow control in the pass-thru device)

6.5.6 ISO 15765-4 (CAN)—The following features of ISO 15765-4 must be supported by the pass-thru device:

a. 250 and 500 kbps
b. 11 and 29 bit identifiers
c. Support for 80% ± 2% bit sample point
d. To maintain acceptable programming times, the transport layer flow control function, as defined in ISO

15765-2, must be incorporated in the pass-thru device (see Appendix A). If the application does not
use the ISO 15765-2 transport layer flow control functionality, the CAN protocol will allow for any
custom transport layer.

6.5.7 SAE J2610 DAIMLERCHRYSLER SCI—Reference the SAE J2610 Information Report for a description of the
SCI protocol.

SAE J2534 Issued FEB2002

-8-

6.6 Programmable Power Supply—The interface shall be capable of supplying between 5 and 20 volts to one of
the following pins (6, 9, 11, 12, 13 or 14) on the SAE J1962 diagnostic connector, or to an auxiliary pin which
would need to be connected to the vehicle via a cable that is unique to the vehicle. As well, short to ground
capability on pin 15 is required. The following requirements shall be met by the power supply:

a. Minimum 5 V
b. Maximum 20 V
c. Accuracy ±0.1 V
d. Maximum source current 200 mA
e. Maximum sink current 300mA (only for SHORT_TO_GROUND option).
f. Maximum 1 ms settling time (required for SCI protocol, reference SAE J2610 Information Report)
g. Pin assignment software selectable

6.7 Data Buffering—The interface shall be capable of buffering a 4K byte transmit message as well as a 4K byte
receive message.

7. Win32 Application Programming Interface

7.1 API Functions – Overview—To conform to this document a vendor supplied API implementation (DLL) must
support the functions included in Figure 2.

FIGURE 2—SAE J2534 API FUNCTIONS

7.2 API Functions - Detailed Information

7.2.1 PASSTHRUCONNECT—This function is used to establish a logical connection with a protocol channel. After
this function is called, the value pointed to by pChannelID is used as the logical identifier for the connection.
The DLL can use this function to initialize data structures and device drivers. If the function operates
successfully, a value of STATUS_NOERROR is returned and a valid channel ID will be placed in
<pChannelID>. All future interactions with the protocol channel will be done using the pChannelID. Note that
all filters for the given protocol will be cleared with this function.

SAE J2534 Issued FEB2002

-9-

7.2.1.1 C / C++ Prototype

extern “C” long WINAPI PassThruConnect
(

unsigned long ProtocolID,
unsigned long Flags,
unsigned long *pChannelID

)

7.2.1.2 Parameters

ProtocolID Protocol ID.
Flags Connection flags, normally set to zero.
pChannelID Pointer to location for the channel ID that is assigned by the DLL.

7.2.1.3 Flag Values—See Figure 3.

FIGURE 3—FLAG VALUES

7.2.1.4 ProtocolID Values—See Figure 4.

FIGURE 4—PROTOCOL ID VALUES

SAE J2534 Issued FEB2002

-10-

7.2.1.5 Return Values—See Figure 5.

FIGURE 5—RETURN VALUES

7.2.2 PASSTHRUDISCONNECT—This function is used to terminate a logical connection with a protocol channel. The
DLL can use this function to de-allocate data structures and deactivate any device drivers. If the function
operates successfully, a value of STATUS_NOERROR is returned. After this call the Channel ID will no
longer be valid.

7.2.2.1 C / C++ Prototype

extern “C” long WINAPI PassThruDisconnect
(

unsigned long ChannelID
)

7.2.2.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.

7.2.2.3 Return Values—See Figure 6.

FIGURE 6—RETURN VALUES

SAE J2534 Issued FEB2002

-11-

7.2.3 PASSTHRUREADMSGS—This function reads messages from the receive buffer in the order they were
received. If the function operates successfully, a value of STATUS_NOERROR is returned. Note that the
ISO 15765-2 FirstFrame and TxDone indications will be returned as messages when calling this function.
Also note that all messages and indications shall be read in the order that they occurred on the bus.

7.2.3.1 C / C++ Prototype

extern “C” long WINAPI PassThruReadMsgs
(

unsigned long ChannelID,
PASSTHRU_MSG *pMsg,
unsigned long *pNumMsgs,
unsigned long Timeout

)

7.2.3.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.
pMsg Pointer to message structure(s).
pNumMsgs Pointer to location where number of messages to read is specified. On return from the

function this location will contain the actual number of messages read.
Timeout Read timeout (in milliseconds). If a value of 0 is specified the function returns immediately.

Otherwise, the API will not return until the Timeout has expired, an error has occurred, or the
desired number of messages have been read. If the number of messages requested have
been read, the function shall not return ERR_TIMEOUT, even if the timeout value is zero.

7.2.3.3 Return Values—See Figure 7.

FIGURE 7—RETURN VALUES

SAE J2534 Issued FEB2002

-12-

7.2.4 PASSTHRUWRITEMSGS—This function is used to send messages. The messages are placed in the buffer
and sent in the order they were received. If the function operates successfully, a value of
STATUS_NOERROR is returned. To perform blocking writes (i.e., the function does not return until
message is successfully sent on the vehicle network or a timeout occurs), use the blocking flag in the
TxFlags element of the message structure (Reference 8.4.2).

7.2.4.1 C / C++ Prototype

extern “C” long WINAPI PassThruWriteMsgs
(

unsigned long ChannelID,
PASSTHRU_MSG *pMsg,
unsigned long *pNumMsgs,
unsigned long Timeout

)

7.2.4.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.
pMsg Pointer to message structure(s).
pNumMsgs Pointer to the location where number of messages to write is specified. On return will

contain the actual number of messages that were transmitted or placed in the transmit
queue.

Timeout Write timeout (in milliseconds). If a value of 0 is specified the function returns immediately.
Otherwise, the API will not return until the Timeout has expired, an error has occurred, or the
desired number of messages have been written. If the number of messages requested have
been written, the function shall not return ERR_TIMEOUT, even if the timeout value is zero.

7.2.4.3 Return Values—See Figure 8.

FIGURE 8—RETURN VALUES

SAE J2534 Issued FEB2002

-13-

7.2.5 PASSTHRUSTARTPERIODICMSG—This function starts sending a message at the specified interval. If the
function operates successfully, a value of STATUS_NOERROR is returned. The maximum number of
periodic messages is ten.

7.2.5.1 C / C++ Prototype

extern “C” long WINAPI PassThruStartPeriodicMsg
(

unsigned long ChannelID,
PASSTHRU_MSG *pMsg,
unsigned long *pMsgID,
unsigned long TimeInterval

)

7.2.5.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.
pMsg Pointer to message structure.
pMsgID Pointer to location for the message ID that is assigned by the DLL.
TimeInterval Time interval between the start of successive transmissions of this message, in

milliseconds. The valid range is 5-65535 milliseconds.

7.2.5.3 Return Values—See Figure 9.

FIGURE 9—RETURN VALUES

SAE J2534 Issued FEB2002

-14-

7.2.6 PASSTHRUSTOPPERIODICMSG—This function stops the process of sending a periodic message. If the
function operates successfully, a value of STATUS_NOERROR is returned. After this call the MsgID will be
invalid.

7.2.6.1 C / C++ Prototype

extern “C” long WINAPI PassThruStopPeriodicMsg
(

unsigned long ChannelID,
unsigned long MsgID

)

7.2.6.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.
MsgID Message ID that is assigned by the PassThruStartPeriodicMsg function.

7.2.6.3 Return Values—See Figure 10.

FIGURE 10—RETURN VALUES

7.2.7 PASSTHRUSTARTMSGFILTER—This function starts filtering incoming messages. If the function operates
successfully, a value of STATUS_NOERROR is returned. The maximum number of message filters is ten.
See Appendices A and B for a description of the use of these message filters for transmission and reception
of multi-frame messages.

7.2.7.1 C / C++ Prototype

extern “C” long WINAPI PassThruStartMsgFilter
(

unsigned long ChannelID,
unsigned long FilterType,
PASSTHRU_MSG *pMaskMsg,
PASSTHRU_MSG *pPatternMsg,
PASSTHRU_MSG *pFlowControlMsg,
unsigned long *pMsgID

)

SAE J2534 Issued FEB2002

-15-

7.2.7.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.
FilterType Designates:

PASS_FILTER – allows matching messages into the receive queue.
BLOCK_FILTER - keeps matching messages out of the receive queue.
FLOW_CONTROL_FILTER – defines a filter and outgoing flow control message
to support the ISO 15765-2 flow control mechanism.

pMaskMsg Designates a pointer to the mask message that will be applied to each incoming
message (i.e., the mask message that will be ANDed to each incoming message) to
mask any unimportant bits.

The usage of the pMaskMsg allows for configuring a filter that passes thru multiple CAN
identifiers. In case the filter allows for the reception of multiple CAN identifiers then
those messages are only allowed to be SingleFrame messages, because only a single
FlowControl CAN identifier can be specified.

pPatternMsg Designates a pointer to the pattern message that will be compared to the incoming
message after the mask message has been applied. If the result matches this pattern
message and the FilterType is PASS_FILTER, then the incoming message will added to
the receive queue (otherwise it will be discarded). If the result matches this pattern
message and the FilterType is BLOCK_FILTER, then the incoming message will be
discarded (otherwise it will be added to the receive queue). Message bytes in the
received message that are beyond the DataSize of the pattern message will be treated
as “don’t care”.

pFlowControlMsg Designates a pointer to an ISO 15765-2 flow control message. This message will be
sent out when the received message ANDed with the message pointed to by pMaskMsg
matches the message pointed to by pPatternMsg and the interface is receiving a
segmented message. This message shall only contain the message ID (and extended
address byte if the ISO15765_EXT_ADDR flag is set). The interface will provide the
PCI bytes when this message is transmitted. To modify the BS and STmin values that
are used by the interface, reference the IOCTL section. This pointer only applies to the
FLOW_CONTROL_FILTER type and must be set to NULL when the FilterType is
PASS_FILTER or BLOCK_FILTER.

pMsgID Pointer to location for the message ID that is assigned by the DLL.

7.2.7.3 Filter Type Values—See Figure 11.

FIGURE 11—FILTER TYPE VALUES

SAE J2534 Issued FEB2002

-16-

7.2.7.4 Return Values—See Figure 12.

FIGURE 12—RETURN VALUES

7.2.8 PASSTHRUSTOPMSGFILTER—This function stops the process of filtering messages. If the function operates
successfully, a value of STATUS_NOERROR is returned. After this call the MsgID will be invalid.

7.2.8.1 C / C++ Prototype

extern “C” long WINAPI PassThruStopMsgFilter
(

unsigned long ChannelID,
unsigned long MsgID

)

7.2.8.2 Prameters

ChannelID The channel ID assigned by the PassThruConnect function.
MsgID Message ID that is assigned by the PassThruStartMsgFilter function.

7.2.8.3 Return Values—See Figure 13.

FIGURE 13—RETURN VALUES

SAE J2534 Issued FEB2002

-17-

7.2.9 PASSTHRUSETPROGRAMMINGVOLTAGE—This function sets a programming voltage on a specific pin. If the
function operates successfully, a value of STATUS_NOERROR is returned. It is up to the application
programmer to insure that voltages are not applied to any pins incorrectly. This function cannot protect from
incorrect usage (e.g., applying a voltage to pin 6 when it is being used for the CAN protocol). Note that for
SCI protocol, the application would set the PinNumber, set the Voltage to VOLTAGE_OFF, and set
SCI_TX_VOLTAGE in TxFlags of the message to pulse the programming voltage to 20 V DC.

7.2.9.1 C / C++ Prototype

extern “C” long WINAPI PassThruSetProgrammingVoltage
(

unsigned long PinNumber,
unsigned long Voltage

)

7.2.9.2 Parameters

PinNumber The pin on which the programming voltage will be set. Valid options are:
0 – Auxiliary output pin (for non-SAE J1962 connectors)
6 – Pin 6 on the SAE J1962 connector.
9 – Pin 9 on the SAE J1962 connector.
11 – Pin 11 on the SAE J1962 connector.
12 – Pin 12 on the SAE J1962 connector.
13 – Pin 13 on the SAE J1962 connector.
14 – Pin 14 on the SAE J1962 connector.
15 – Pin 15 on the SAE J1962 connector (short to ground only).

Voltage The voltage (in millivolts) to be set. Valid values are:
5000mV-20000mV (limited to 200mA with a resolution of ±100 millivolts for pins 0, 6, 9, 11,
12, 13, and 14).
VOLTAGE_OFF – To turn output off (disconnect).
SHORT_TO_GROUND – Short pin to ground (pin 15 only).

7.2.9.3 Voltage Values—See Figure 14.

FIGURE 14—VOLTAGE VALUES

7.2.9.4 Return Values—See Figure 15.

FIGURE 15—RETURN VALUES

SAE J2534 Issued FEB2002

-18-

7.2.10 PASSTHRUREADVERSION—This function returns the version strings associated with the DLL. If the function
operates successfully, a value of STATUS_NOERROR is returned. A buffer of at least eighty (80)
characters must be allocated for each pointer by the application.

7.2.10.1 C / C++ Prototype

extern “C” long WINAPI PassThruReadVersion
(

char*pFirmwareVersion,
char*pDllVersion,
char*pApiVersion

)

7.2.10.2 Parameters

pFirmwareVersion Pointer to Firmware version string in XX.YY format (e.g., 01.01). This string is
determined by the interface vendor that supplies the device.

pDllVersion Pointer to DLL version string in XX.YY format (e.g., 01.01). This string is determined
by the interface vendor that supplies the DLL.

pApiVersion Pointer to API version string in XX.YY format. This string corresponds to the date of
the balloted document.
October 2001 Ballot = “01.01”
December 2001 Ballot = “01.02”
February 2002 Final = “02.02”

7.2.10.3 Return Values—See Figure 16.

FIGURE 16—RETURN VALUES

SAE J2534 Issued FEB2002

-19-

7.2.11 PASSTHRUGETLASTERROR—This function returns the text string description for an error detected during the
last function call (except PassThruGetLastError). This function must be called before calling any other
function. The buffer pointed to by pErrorDescription is allocated by the application and must be at least
eighty (80) characters.

7.2.11.1 C / C++ Prototype

extern “C” long WINAPI PassThruGetLastError
(

char *pErrorDescription
)

7.2.11.2 Parameters

pErrorDescription Pointer to error description string.

7.2.11.3 Return Values—See Figure 17.

FIGURE 17—RETURN VALUES

7.2.12 PASSTHRUIOCTL—This function is used to read and write all the protocol hardware and software configuration
parameters. If the function operates successfully, a value of STATUS_NOERROR is returned. The
structures pointed to by pInput and pOutput are determined by the IoctlID. Please see section on IOCTL
structures for details.

7.2.12.1 C / C++ Prototype

extern “C” long WINAPI PassThruIoctl
(

unsigned long ChannelID,
unsigned long IoctlID,
void *pInput,
void *pOutput

)

7.2.12.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.
IoctlID Ioctl ID (see the IOCTL Section).
pInput Pointer to input structure (see the IOCTL Section).
pOutput Pointer to output structure (see the IOCTL Section).

SAE J2534 Issued FEB2002

-20-

7.2.12.3 Ioctl ID Values—See Figure 18.

FIGURE 18—IOCTL ID VALUES

7.2.12.4 Return Values—See Figure 19.

FIGURE 19—RETURN VALUES

SAE J2534 Issued FEB2002

-21-

7.3 IOCTL Section—Figure 20 provides the details on the IOCTLs available through PassThruIoctl function:

FIGURE 20—IOCTL DETAILS

7.3.1 GET_CONFIG—The IoctlID value of GET_CONFIG is used to obtain the vehicle network configuration of the
pass-thru device. The calling application is responsible for allocating and initializing the associated
parameters described in Figure 21. When the function is successfully completed, the corresponding
parameter value(s) indicated in Figures 23A, 23B, and 23C will be placed in each Value.

SAE J2534 Issued FEB2002

-22-

FIGURE 21—GET_CONFIG DETAIL

7.3.2 SET_CONFIG—The IoctlID value of SET_CONFIG is used to set the vehicle network configuration of the
pass-thru device. The calling application is responsible for allocating and initializing the associated
parameters described in Figure 22. When the function is successfully completed the corresponding
parameter(s) and value(s) indicated in Figures 23A, 23B, and 23C will be in effect.

SAE J2534 Issued FEB2002

-23-

FIGURE 22—SET_CONFIG DETAILS

FIGURE 23A—IOCTL GET_CONFIG / SET_CONFIG PARAMETER DETAILS

SAE J2534 Issued FEB2002

-24-

FIGURE 23B—IOCTL GET_CONFIG / SET_CONFIG PARAMETER DETAILS (CONTINUED)

SAE J2534 Issued FEB2002

-25-

FIGURE 23C—IOCTL GET_CONFIG / SET_CONFIG PARAMETER DETAILS (CONTINUED)

7.3.3 READ_VBATT—The IoctlID value of READ_VBATT is used to obtain the voltage measured on pin 16 of the
SAE J1962 connector from the pass-thru device. The calling application is responsible for allocating and
initializing the associated parameters described in Figure 24. When the function is successfully completed,
battery voltage will be placed in the variable pointed to by OutputPtr. The units will be in milli-volts and will be
rounded to the nearest tenth of a volt.

FIGURE 24—READ_VBATT DETAILS

SAE J2534 Issued FEB2002

-26-

7.3.4 READ_PROG_VOLTAGE—The IoctlID value of READ_PROG_VOLTAGE is used to obtain the
programming voltage of the pass-thru device. The calling application is responsible for allocating and
initializing the associated parameters described in Figure 25. When the function is successfully completed,
programming voltage will be placed in the variable pointed to by OutputPtr. The units will be in milli-volts and
will be rounded to the nearest tenth of a volt.

FIGURE 25—READ_PROG_VOLTAGE DETAILS

7.3.5 FIVE_BAUD_INIT—The IoctlID value of FIVE_BAUD_INIT is used to initiate a 5-baud initialization sequence
from the pass-thru device. The calling application is responsible for allocating and initializing the associated
parameters described in Figure 26. When the function is successfully completed, the key words will be placed
in structure pointed to by OutputPtr. It should be noted that this only applies to Protocol ID of ISO 9141.

FIGURE 26—FIVE_BAUD_INIT DETAILS

7.3.6 FAST_INIT—The IoctlID value of FAST_INIT is used to initiate a fast initialization sequence from the pass-
thru device. The calling application is responsible for allocating and initializing the associated parameters
described in Figure 27. When the function is successfully completed, the response message will be placed in
structure pointed to by OutputPtr. It should be noted that this only applies to Protocol ID of ISO 9141.

FIGURE 27—FAST_INIT DETAILS

SAE J2534 Issued FEB2002

-27-

7.3.7 CLEAR_TX_BUFFER—The IoctlID value of CLEAR_TX_BUFFER is used to direct the pass-thru device to
clear its transmit queue. The calling application is responsible for allocating and initializing the associated
parameters described in Figure 28. When the function is successfully completed, the transmit queue will
have been cleared.

FIGURE 28—CLEAR_TX_BUFFER DETAILS

7.3.8 CLEAR_RX_BUFFER—The IoctlID value of CLEAR_RX_BUFFER is used to direct the pass-thru device to
clear its receive queue. The calling application is responsible for allocating and initializing the associated
parameters described in Figure 29. When the function is successfully completed, the receive queue will
have been cleared.

FIGURE 29—CLEAR_RX_BUFFER DETAILS

7.3.9 CLEAR_PERIODIC_MSGS—The IoctlID value of CLEAR_PERIODIC_MSGS is used to direct the pass-thru
device to clear its periodic messages. The calling application is responsible for allocating and initializing the
associated parameters described in Figure 30. When the function is successfully completed, the list will
have been cleared and all periodic messages will have stopped transmitting.

FIGURE 30—CLEAR_PERIODIC_MSGS DETAILS

7.3.10 CLEAR_MSG_FILTERS—The IoctlID value of CLEAR_MSG_FILTERS is used to direct the pass-thru
device to clear its message filters. The calling application is responsible for allocating and initializing the
associated parameters described in Figure 31. When the function is successfully completed, the list will
have been cleared and all message filtering will have stopped.

FIGURE 31—CLEAR_MSG_FILTERS DETAILS

SAE J2534 Issued FEB2002

-28-

7.3.11 CLEAR_FUNCT_MSG_LOOKUP_TABLE—The IoctlID value of CLEAR_FUNCT_MSG_LOOKUP_TABLE
is used to direct the pass-thru device to clear its functional message look-up table. The calling application is
responsible for allocating and initializing the associated parameters described in Figure 32. When the
function is successfully completed, the table will have been cleared. It should be noted that this only applies
Protocol ID of SAE J1850PWM.

FIGURE 32—CLEAR_FUNCT_MSG_LOOKUP_TABLE DETAILS

7.3.12 ADD_TO_FUNCT_MSG_LOOKUP_TABLE—The IoctlID value of ADD_TO_FUNCT_MSG_LOOKUP_TABLE
is used to add functional address(es) to the functional message look-up table in the physical layer of the
vehicle network on the pass-thru device. The calling application is responsible for allocating and initializing the
associated parameters described in Figure 33. When the function is successfully completed, the look-up table
will have been altered. It should be noted that this only applies Protocol ID of J1850PWM.

FIGURE 33—ADD_TO_FUNCT_MSG_LOOKUP_TABLE DETAILS

SAE J2534 Issued FEB2002

-29-

7.3.13 DELETE_FROM_FUNCT_MSG_LOOKUP_TABLE—The IoctlID value of DELETE_FROM_FUNCT_MSG_
LOOKUP_TABLE is used to delete functional address(es) from the functional message look-up table in the
physical layer of the vehicle network on the pass-thru device. The calling application is responsible for
allocating and initializing the associated parameters described in Figure 34. When the function is
successfully completed, the look-up table will have been altered. It should be noted that this only applies
Protocol ID of J1850PWM.

FIGURE 34—DELETE_FROM_FUNCT_MSG_LOOKUP_TABLE DETAILS

8. Message Structure—The following message structure will be used for all messages. The total message size
(in bytes) is the DataSize. The ExtraDataIndex points to the IFR or checksum/CRC byte(s) when applicable.
For consistency, all interfaces should detect only the errors listed for each protocol in the following sections
when returning ERR_INVALID_MSG.

8.1 C / C++ Definition

typedef struct {
unsigned long ProtocolID;
unsigned long RxStatus;
unsigned long TxFlags;
unsigned long Timestamp;
unsigned long DataSize;
unsigned long ExtraDataIndex;
unsigned char Data[4128];

} PASSTHRU_MSG;

8.2 Elements

ProtocolID Protocol type
RxStatus Receive message status – See RxStatus in “Message Flags and Status Definition”

section
TxFlags Transmit message flags – See TxFlags in “Message Flags and Status Definition”

section
Timestamp Received message timestamp (microseconds)
DataSize Data size in bytes
ExtraDataIndex Start position of extra data in received message (e.g., IFR, CRC, checksum, …). The

extra data bytes follow the body bytes in the Data array. The index is zero-based.
Data Array of data bytes.

SAE J2534 Issued FEB2002

-30-

8.3 Message Data Formats—The following sections describe the bytes in the Data section of the
PASSTHRU_MSG structure. In cases where extra data is included, the ExtraDataIndex will give the byte
index from the beginning of the PASSTHRU_MSG structure Data section to the first byte of extra data.

NOTE— Extra bytes are not supported for PASSTHRU_MSG structures used for transmitting messages.

8.3.1 CAN DATA FORMAT—The CAN protocol is used for raw CAN message interfacing to the vehicle. This
protocol can be used to handle any custom CAN messaging protocol, including custom flow control
mechanisms. The order of the bytes is shown in Figure 35.

FIGURE 35—CAN DATA FORMAT

NOTE— Extra bytes are not supported for PASSTHRU_MSG structures used for transmitted messages.

8.3.1.1 CAN Data Format Error Detection—The following data format errors should be detected when using the
ERR_INVALID_MSG for CAN data:

a. DataSize less than four (4) bytes or greater than twelve (12) bytes (4 ID bytes + 8 data bytes).

8.3.2 ISO 15765-4 DATA FORMAT—The ISO 15765-4 protocol implements the network layer (i.e., adding the PCI
byte to the transmitted messages, performing flow control, and removing the PCI byte from received
messages) in the device so the application just sends and receives the actual message data. The order of
the bytes is shown in Figure 36.

FIGURE 36—ISO 15765-4 DATA FORMAT

NOTE— Extra bytes are not supported for PASSTHRU_MSG structures used for transmitted messages.

SAE J2534 Issued FEB2002

-31-

8.3.2.1 ISO 15765-4 Data Format Error Detection—The following data format errors should be detected when
using the ERR_INVALID_MSG for ISO 15765-4 data:

a. DataSize less than four (4) bytes (ID only) or greater than 4101 bytes (4 ID bytes + 1 possible
extended address byte + 4096 data bytes).

8.3.3 SAE J1850PWM DATA FORMAT—The order of bytes for J1850PWM is shown in Figure 37.

FIGURE 37—SAE J1850PWM DATA FORMAT

NOTE— Extra bytes are not supported for PASSTHRU_MSG structures used for transmitted messages.

8.3.3.1 SAE J1850PWM Data Format Error Detection—The following data format errors should be detected when
using the ERR_INVALID_MSG for J1850PWM data:

a. DataSize less than three (3) bytes (3 header bytes) or greater than 10 bytes (3 header bytes + 7 data
bytes).

b. Source address that is different than the node ID.

8.3.4 SAE J1850VPW DATA FORMAT—The order of bytes for SAE J1850VPW is shown in Figure 38.

FIGURE 38—SAE J1850VPW DATA FORMAT

NOTE— Extra bytes are not supported for PASSTHRU_MSG structures used for transmitted messages.

8.3.4.1 SAE J1850VPW Data Format Error Detection—The following data format errors should be detected when
using the ERR_INVALID_MSG for SAE J1850VPW data:

a. DataSize of zero or greater than 4128 bytes.

SAE J2534 Issued FEB2002

-32-

8.3.5 ISO 9141 DATA FORMAT—The order of bytes for ISO 9141 is shown in Figure 39.

FIGURE 39—ISO 9141 DATA FORMAT

8.3.5.1 ISO 9141 Data Format Error Detection—The following data format errors should be detected when using
the ERR_INVALID_MSG for ISO 9141 data:

a. DataSize of zero or greater than 261 bytes.

8.3.6 ISO 14230-4 DATA FORMAT—The order of bytes for ISO 14230-4 is shown in Figure 40.

FIGURE 40—ISO 14230-4 DATA FORMAT

8.3.6.1 ISO 14230-4 Data Format Error Detection—The following data format errors should be detected when
using the ERR_INVALID_MSG for ISO 14230-4 data:

a. DataSize of less than four (4 byte header) or greater than 261 bytes (4 byte header + 256 data bytes +
1 byte checksum).

8.3.7 SCI DATA FORMAT—The order of bytes for SCI is shown in Figure 41.

FIGURE 41—SCI DATA FORMAT

8.3.7.1 SCI Data Format Error Detection—The following data format errors should be detected when using the
ERR_INVALID_MSG for SCI data:

a. DataSize of zero or greater than 256 bytes.

SAE J2534 Issued FEB2002

-33-

8.4 Message Flag and Status Definitions

8.4.1 RXSTATUS—Definitions for RxStatus bits are shown in Figure 42.

FIGURE 42—RXSTATUS BIT DEFINITIONS

8.4.2 TXFLAGS—Definitions for TxFlags bits are shown in Figure 43.

FIGURE 43—TXFLAGS BIT DEFINITIONS

SAE J2534 Issued FEB2002

-34-

9. DLL Installation and Registration

9.1 Naming of Files— In general, each vendor will provide a different name implementation of the API DLL and a
number of these implementations could simultaneously reside on the same PC. No vendor shall name its
implementation “J2534.DLL”. All implementations shall have the string “32” suffixed to end of the name of the
API DLL to indicate 32-bit. For example, if the company name is “Vendor X” the name could be
VENDRX32.DLL. For simplicity, an API DLL shall be named in accordance with the file allocation table (FAT)
file system naming convention (which allows up to eight characters for the file name and three characters for
the extension with no spaces anywhere). Note that, given this criteria, the major name of an API DLL can be
no greater than six characters. The OEM application can determine the name of the appropriate vendor’s DLL
using the Win32 Registry mechanism described in this section.

9.2 Win32 Registration—This section describes the use of the Windows Registry for storing information about the
various vendors supplying the device drivers conforming to this recommended practice, the various devices
supported by each vendor, information about each device, etc. The Win32 registration is shown in Figure 44.

FIGURE 44—WIN32 REGISTRATION

SAE J2534 Issued FEB2002

-35-

The registry will contain both:

a. General information used by the user applications for selection of hardware, user information, etc.
b. Vendor/Device specific information that the vendor uses in the implementation of the API. Considering

that the object of this recommended practice is the need for interchangeability of hardware from
various vendors, the user application using the this API will be required to use the registry to present to
the users all the hardware devices that have been installed and display their capabilities. The user
should be allowed to select any hardware having the required capabilities, in terms of protocols
supported etc., for a particular reprogramming session.

The Devices key will contain a list of keys, one for each device supported by the vendor.

Ex: ACME Serial Device
ACME Ethernet Device
ACME Parallel Device etc.

Each Vendor Device Key will have the entries shown in Figure 45 associated with them:

Example for Key: ACME Ethernet Device

FIGURE 45—WIN32 REGISTRY VALUES

SAE J2534 Issued FEB2002

-36-

9.2.1 USER APPLICATION INTERACTION WITH THE REGISTRY—The user application should use the registry to present
to the user the list of devices available for use from the application. Once the device has been selected by
the user the Registry should be used to retrieve all the information regarding the device so that the
appropriate DLL can be loaded for use etc. Figure 46 is a flow chart that shows a typical usage.

FIGURE 46—APPLICATION INTERACTION WITH REGISTRY

SAE J2534 Issued FEB2002

-37-

9.2.2 ATTACHING TO THE DLL FROM AN APPLICATION—This document requires OEM programming applications to
explicitly load the appropriate DLL and resolve references to the DLL supplied functions. This is
accomplished by using the native Win32 API functions, LoadLibrary, GetProcAddress and FreeLibrary (see
the Win32 API SDK reference for the details of these functions).

When using GetProcAddress, the application must supply the name of the function whose address is being
requested. The function names should be used with GetProcAddress in order to explicitly resolve DLL
function addresses when using GetProcAddress.

To support this method, it is required that all tool vendors compile their DLL with the following export library
definition file. This will help prevent name mangling and allow software developers to use the process
defined in this section as well as calling by ordinal for compilers/languages that may not support that
functionality.

All vendor DLLs and OEM applications should be built with byte alignment (i.e., packing) set to one (1) byte.

9.2.2.1 Export Library Definition File

;VENDOR32.DEF: Declares the module parameters.
LIBRARY “VENDOR32.DLL”
EXPORTS

PassThruConnect @1 PRIVATE
PassThruDisconnect @2 PRIVATE
PassThruReadMsgs @3 PRIVATE
PassThruWriteMsgs @4 PRIVATE
PassThruStartPeriodicMsg @5 PRIVATE
PassThruStopPeriodicMsg @6 PRIVATE
PassThruStartMsgFilter @7 PRIVATE
PassThruStopMsgFilter @8 PRIVATE
PassThruSetProgrammingVoltage @9 PRIVATE
PassThruReadVersion @10 PRIVATE
PassThruGetLastError @11 PRIVATE
PassThruIoctl @12 PRIVATE

10. Return Value Error Codes—Figure 47 lists the numerical equivalents and text description for the error or
return codes identified in this document.

SAE J2534 Issued FEB2002

-38-

FIGURE 47—ERROR VALUES

PREPARED BY THE SAE PASS-THRU PROGRAMMING SAE J2534 TASK FORCE OF
THE SAE VEHICLE E/E SYSTEMS DIAGNOSTICS STANDARD COMMITTEE

SAE J2534 Issued FEB2002

-39-

APPENDIX A

GENERAL ISO 15765-2 FLOW CONTROL EXAMPLE

A.1 Normal Addressing Used—This section includes examples of multi-frame request and response messages
using flow control as defined in ISO 15765-2. These examples assume that normal addressing is used for the
request and the response messages (no extended address present), and that the CAN identifier assignments
shown in Figure A1 apply.

FIGURE A1—CAN IDENTIFIER ASSIGNMENT EXAMPLE

A.2 General Request Message Flow Example—The general request message CAN frame flow example in
Figure A2 shows the usage of the PassThru functions in the pass-thru interface to transmit a multi-frame
request message to the ECU and how the CAN frames are transmitted onto the CAN bus by the interface and
the ECU.

a. The application requests the transmission of a request message via the PassThruWriteMsgs API
function. The pass-thru interface transmits the FirstFrame to the ECU using the physical request CAN
Identifier.

b. The ECU confirms the reception of the FirstFrame and transmits its FlowControl frame (using the
response CAN Identifier) with FlowStatus set to CTS (ClearToSend), BS equal to 3 and STmin set to
the minimum time the pass-thru interface shall wait between the transmission of the
ConsecutiveFrames.

c. After the reception of the FlowControl frame from the ECU the pass-thru interface starts to transmit the
first block of ConsecutiveFrames of the request message, using the physical request CAN Identifier.
After the transmission of 3 ConsecutiveFrames the interface stops transmitting, because it awaits that
the ECU sends a FlowControl frame.

d. The ECU confirms the reception of the 3 ConsecutiveFrames and transmits its FlowControl frame
(using the response CAN Identifier) with FlowStatus set to WAIT. This indicates to the pass-thru
interface that the ECU is in progress of processing the ConsecutiveFrames and that a further
FlowControl will be transmitted (which either indicates that the ECU needs further time to process the
received data or that the interface can continue to send ConsecutiveFrames).

e. The ECU transmits its FlowControl frame with FlowStatus set to CTS (ClearToSend), BS equal to 3
and STmin set to the minimum time the pass-thru interface shall wait between the transmission of the
further ConsecutiveFrames.

SAE J2534 Issued FEB2002

-40-

f. After the reception of the FlowControl frame from the ECU the pass-thru interface starts to transmit the
remaining 2 ConsecutiveFrames of the request message, using the physical request CAN Identifier.
After the transmission of the 2 ConsecutiveFrames the request message is completely transmitted to
the ECU and the ECU can process the request. The completion of the transmission is confirmed to the
application via the TX_MSG_TYPE bit in RxStatus retrieved through the PassThruReadMsgs API
function.

FIGURE A2—GENERAL CAN FRAME FLOW EXAMPLE - REQUEST MESSAGE

A.3 General Response Message Flow Example—The response message CAN frame flow example in Figure A3
shows the usage of the PassThru functions in the pass-thru interface during the reception of a multi-frame
response message from the ECU and how the CAN frames are transmitted onto the CAN bus by the interface
and the ECU.

a. The ECU application requests the transmission of a response message. The ECU transmits the
FirstFrame to the pass-thru interface using the response CAN Identifier.

b. The pass-thru interface confirms the reception of the FirstFrame and transmits its FlowControl frame
(using the physical request CAN Identifier) with FlowStatus set to CTS (ClearToSend), BS equal to 5
and STmin set to the minimum time the ECU shall wait between the transmission of the
ConsecutiveFrames. The reception of the FirstFrame is indicated to the application via the
ISO15765_FIRST_FRAME bit in RxStatus retrieved through the PassThruReadMsgs API function.

c. After the reception of the FlowControl frame from the pass-thru interface the ECU starts to transmit the
first block of ConsecutiveFrames of the response message, using the response CAN Identifier. After
the transmission of 5 ConsecutiveFrames the ECU stops transmitting, because it awaits that the
interface sends a FlowControl frame.

SAE J2534 Issued FEB2002

-41-

d. The pass-thru interface confirms the reception of the 5 ConsecutiveFrames and transmits its
FlowControl frame (using the physical request CAN Identifier) with FlowStatus set to CTS, BS equal to
5 and STmin set to the minimum time the ECU shall wait between the transmission of the further
ConsecutiveFrames.

e. After the reception of the FlowControl frame from the pass-thru interface the ECU starts to transmit the
remaining 3 ConsecutiveFrames of the response message, using the response CAN Identifier. After
the transmission of the 3 ConsecutiveFrames the response message is completely transmitted to the
interface. The completion of the reception is indicated to the application via the TX_MSG_TYPE bit in
RxStatus retrieved through the PassThruReadMsgs API function (plus the received data).

FIGURE A3—GENERAL CAN FRAME FLOW EXAMPLE - RESPONSE MESSAGE

SAE J2534 Issued FEB2002

-42-

APPENDIX B

MESSAGE FILTER USAGE EXAMPLE

B.1 Filter Usage—The message flow example in Appendix A generally shows how the transmission and reception
of a multi-frame message is done according to ISO 15765-2, using normal addressing. This section will
describe how the filters have to be configured in the pass-thru interface in order to be able to transmit and
receive the shown multi-frame messages (request/response).

B.2 Transmission of a Multi-Frame Request Message—The programming application requests the
transmission of a request message via the PassThruWriteMsgs API function. If the transmitted message is
more than will fit into a single CAN frame then the pass-thru interface transmits the FirstFrame of the multi-
frame message. The FirstFrame uses the CAN ID (241 hex plus optional extended address) as specified in the
message passed via the PassThruWriteMsgs API function. The FlowControl sent by the ECU is received,
masked, and matched (CAN Identifier 641 hex plus optional extended address) with the flow control filter that
was setup with the PassThruStartMsgFilter API function. If there is a match, the message is then transmitted
according to the BS and STmin values in the FlowControl message.

B.3 Reception of a Multi-Frame Response Message—The ECU starts to transmit its response message by
sending the FirstFrame. The FirstFrame sent by the ECU is received, masked, and matched (CAN Identifier
641 hex plus optional extended address) with the flow control filter that was setup with the
PassThruStartMsgFilter API function. If there is a match, a FirstFrame indication is given by a zero length
message with the ISO15765_FIRST_FRAME bit set in the RxStatus. Next, FlowControl frame is sent to the
ECU using either the default BS and STmin parameters, or the modified values set using the PassThruIoctl
API function. If the interface is not capable of supporting those values, the interface may override them.

B.4 Filter Configuration—This section defines how the filter in the API shall be specified in order to be able to
receive and transmit the multi-frame messages as given in the previous sections. It is assumed that the pass-
thru interface is connected properly to the application (PassThruConnect already performed) and the
ChannelID required to be passed to the PassThruStartMsgFilter API function is valid. The parameters passed
to the PassThruStartMsgFilter function in order to be able to transmit and receive the example multi-frame
messages are specified as follows:

ChannelID: Contains the value retrieved previously via the PassThruConnect function for the
ISO15765 protocol.

FilterType: FLOW_CONTROL_FILTER
pMaskMsg: Receive message mask, points to a PASSTHRU_MSG, where the structure members are

set as follows (note that all bits are relevant to be filtered on for the given example):

ProtocolID: ISO15765
RxStatus: 00 hex (don't care for filter)
TxFlags: SCI_TX_VOLTAGE = 0

BLOCKING = 0
CAN_29BIT_ID = 0 (11 bit CAN ID used)
ISO15765_ADDR_TYPE=0 (normal addressing used)
ISO15765_FRAME_PAD=0 (don't care for reception)
resulting TxFlags value: 00000000 hex

TimeStamp: 00000000 hex (don't care)
DataSize: 4 (CAN ID only)
ExtraDataIndex: 0
Data: 00 00 07 FF hex

SAE J2534 Issued FEB2002

-43-

pPatternMsg: Receive message, points to a PASSTHRU_MSG, where the structure members are set
as follows:

ProtocolID: ISO15765
RxStatus: 00 hex (don't care)
TxFlags: SCI_TX_VOLTAGE = 0

BLOCKING = 0
CAN_29BIT_ID = 0 (11 bit CAN ID used)
ISO15765_ADDR_TYPE=0 (normal addressing used)
ISO15765_FRAME_PAD=0 (don't care for reception)
resulting TxFlags value: 00000000 hex

TimeStamp: 00000000 hex (don't care)
DataSize: 4 (CAN ID only)
ExtraDataIndex: 0
Data: 00 00 06 41 hex

pFlowControlMsg: Transmit message, points to a PASSTHRU_MSG, where the structure members are set
as follows:

ProtocolID: ISO15765
RxStatus: 00 hex (don't care)
TxFlags: SCI_TX_VOLTAGE = 0

BLOCKING = 0
CAN_29BIT_ID = 0 (11 bit CAN ID used)
ISO15765_ADDR_TYPE=0 (normal addressing used)
ISO15765_FRAME_PAD=0 (no padding in case of FlowControl
transmission. In case of FirstFrame and ConsecutiveFrame
transmission the padding flag given in the message to be transmitted
is used - provided in PassThruWriteMsgs)
resulting TxFlags value: 00000000 hex

TimeStamp: 00000000 hex (don't care)
DataSize: 4 (CAN ID only)
ExtraDataIndex: 0
Data: 00 00 02 41 hex

pMsgID: Pointer to storage location for filter reference identifier (later used to delete filter).

With the filter configured as shown in this section, the interface is able to transmit and receive the multi-frame
messages as given in the examples. The following figures provide details regarding the handling in the pass-
thru interface, taking into account that this filter is set-up in the pass-thru interface.

SAE J2534 Issued FEB2002

-44-

B.4.1 Request Message Transmission—See Figure B1.

FIGURE B1—MESSAGE FLOW EXAMPLE WITH REFERENCES TO FILTER PARAMETERS -
REQUEST MESSAGE

The application configures the flow control filter using the PassThruStartMsgFilter API function.

a. The application requests the transmission of a segmented (i.e., more than one CAN frame of data)
message via the PassThruWriteMsgs API function. The interface transmits the FirstFrame to the ECU
using the CAN Identifier as given in the message to be transmitted.

b. The ECU confirms the reception of the FirstFrame and transmits its FlowControl frame (using the
response CAN Identifier) with FlowStatus set to CTS (ClearToSend), BS equal to 3 and STmin set to
the minimum time the pass-thru interface shall wait between the transmission of the
ConsecutiveFrames.

c. The pass-thru interface searches all configured flow control filters to see if a match with FlowControl
message can be found. In case a match is found then the pass-thru interface starts transmitting
ConsecutiveFrames according to the FlowControl parameters received, using the CAN Identifier as
given in the message to be transmitted. After the transmission of 3 ConsecutiveFrames the pass-thru
interface stops transmitting, because it awaits that the ECU sends a FlowControl frame.

d. The ECU confirms the reception of the 3 ConsecutiveFrames and transmits its FlowControl frame
(using the response CAN Identifier) with FlowStatus set to WAIT. The pass-thru interface searches all
configured filters for a match. In case a match is found then the pass-thru interface behaves as
specified in the FlowControl frame (wait for further FlowControl).

e. The ECU transmits its FlowControl frame with FlowStatus set to CTS (ClearToSend), BS equal to 3
and STmin set to the minimum time the pass-thru interface shall wait between the transmission of the
further ConsecutiveFrames.

SAE J2534 Issued FEB2002

-45-

f. The pass-thru interface searches all configured filters for a match. In case a match is found then the
pass-thru interface behaves as specified in the FlowControl frame. The pass-thru interface starts to
transmit the remaining 2 ConsecutiveFrames of the request message, using the CAN Identifier as
given in the original message to be transmitted. After the transmission of the 2 ConsecutiveFrames the
request message is completely transmitted to the ECU and the ECU can process the request. The
completion of the transmission is confirmed to the application via the TX_MSG_TYPE bit in RxStatus
retrieved through the PassThruReadMsgs API function.

B.4.2 Response Message Reception—See Figure B2.

FIGURE B2—MESSAGE FLOW EXAMPLE WITH REFERENCES TO FILTER PARAMETERS -
RESPONSE MESSAGE

The application configures the flow control filter using the PassThruStartMsgFilter API function. The
application configures the BS (5) and STmin (0) parameters for the interface using the PassThruIoctl API
function, but the interface may override these values to match the capabilities of the interface.

a. The ECU application requests the transmission of a response message. The ECU transmits the
FirstFrame to the pass-thru interface using the response CAN Identifier.

b. The pass-thru interface receives the FirstFrame and searches all configured filters for a match. In case
a match is found then the pass-thru interface confirms the reception of the FirstFrame and transmits its
FlowControl frame (using the CAN Identifier and the padding information as specified in the flow
control filter message). The FlowStatus will be CTS (ClearToSend), BS (IOCTL parameter) will be
equal to 5 and STmin (IOCTL parameter) will be set to the minimum time the ECU shall wait between
the transmission of the ConsecutiveFrames. Furthermore the reception of the FirstFrame is indicated
to the application via the ISO15765_FIRST_FRAME bit in RxStatus retrieved through the
PassThruReadMsgs API function (using a message of zero length).

SAE J2534 Issued FEB2002

-46-

c. After the reception of the FlowControl frame from the pass-thru interface the ECU starts to transmit the
first block of ConsecutiveFrames of the request message, using the response CAN Identifier. After the
transmission of 5 ConsecutiveFrames the ECU stops transmitting, because it awaits that the pass-thru
interface sends a FlowControl frame. For any received ConsecutiveFrame the pass-thru interface will
search through the list of configured filters to find a match. In case a match is found then the data of
the ConsecutiveFrame will be stored internally for the later message receive indication.

d. The pass-thru interface confirms the reception of the block of 5 ConsecutiveFrames and transmits its
FlowControl frame using the message configured in the filter. The FlowStatus will be set to CTS, BS
will be equal to 5 and STmin will be set to the minimum time the ECU shall wait between the
transmission of the further ConsecutiveFrames.

e. After the reception of the FlowControl frame from the pass-thru interface the ECU starts to transmit the
remaining 3 ConsecutiveFrames of the response message, using the response CAN Identifier. For any
received ConsecutiveFrame the pass-thru interface will search through the list of configured filters to
find a match. In case a match is found then the data of the ConsecutiveFrame will be stored internally
for the later receive indication. After the transmission of the 3 ConsecutiveFrames the response
message is completely transmitted to the pass-thru interface. The completion of the reception is
indicated to the application via the TX_MSG_TYPE bit in RxStatus retrieved through the
PassThruReadMsgs API function (plus the collected message data).

B.5 ISO 15765-2 Extended Addressing Notes—For extended addressing the same handling as described for
normal addressing applies, except that the filter in the pass-thru interface is set-up to use the extended
address in addition to the CAN ID when filtering on receive messages and verifying that a transmission is
possible.

SAE J2534 Issued FEB2002

Rationale—The U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (ARB)
have been working with vehicle manufacturers to provide the aftermarket with increased capability to
service emission-related ECU’s for all vehicles with a minimal investment in hardware needed to
communicate with the vehicles. Both agencies have proposed regulations that will require standardized
programming tools to be used for all vehicle manufacturers. The Society of Automotive Engineers
(SAE) developed this Recommended Practice to satisfy the intent of the U.S. EPA and the California
ARB.

Relationship of SAE Standard to ISO Standard—Not applicable.

Application—This SAE Recommended Practice provides the framework to allow reprogramming software
applications from all vehicle manufacturers the flexibility to work with multiple vehicle data link interface
tools from multiple tool suppliers. This system enables each vehicle manufacturer to control the
programming sequence for electronic control units (ECU’s) in their vehicles, but allows a single set of
programming hardware and vehicle interface to be used to program modules for all vehicle
manufacturers.

This document does not limit the hardware possibilities for the connection between the PC used for the
software application and the tool (e.g., RS-232, RS-485, USB, Ethernet…). Tool suppliers are free to
choose the hardware interface appropriate for their tool. The goal of this document is to ensure that
reprogramming software from any vehicle manufacturer is compatible with hardware supplied by any
tool manufacturer.

The U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (ARB) have
proposed requirements for reprogramming vehicles for all manufacturers by the aftermarket repair
industry. This document is intended to meet those proposed requirements for 2004 model year vehicles.
Additional requirements for the 2005 model year may require revision of this document, most notably the
inclusion of SAE J1939 for some heavy-duty vehicles. This document will be reviewed for possible
revision after those regulations are finalized and requirements are better understood. Possible revisions
include SAE J1939 specific software and an alternate vehicle connector, but the basic hardware of an
SAE J2534 interface device is expected to remain unchanged.

Reference Section

SAE J1850—Class B Data Communications Network Interface

SAE J1939—Truck and Bus Control and Communications Network (multiple parts apply)

SAE J1962—Diagnostic Connector

SAE J2610—DaimlerChrysler Information Report for Serial Data Communication Interface (SCI)

ISO 7637-1:1990—Road vehicles—Electrical disturbance by conduction and coupling—Part 1: Passenger
cars and light commercial vehicles with nominal 12 V supply voltage

ISO 9141:1989—Road vehicles—Diagnostic systems—Requirements for interchange of digital information

ISO 9141-2:1994—Road vehicles—Diagnostic systems—CARB requirements for interchange of digital
information

ISO 11898:1993—Road vehicles—Interchange of digital information—Controller area network (CAN) for
high speed communication

SAE J2534 Issued FEB2002

ISO 14230-4:2000—Road vehicles—Diagnostic systems—Keyword protocol 2000—Part 4:
Requirements for emission-related systems

ISO/DIS 15765-2—Road vehicles—Diagnostics on controller area networks (CAN)—Network layer
services

ISO/DIS 15765-4—Road vehicles—Diagnostics on controller area networks (CAN)—Requirements for
emission-related systems

Developed by the SAE Pass-Thru Programming SAE J2534 Task Force

Sponsored by the SAE Vehicle E/E Systems Diagnostics Standard Committee

